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Introduction to Perturbation-Based 
Explanations

Why it Matters:

•Machine learning powers entertainment, medicine, and finance.
•Increasing reliance → Need for transparency and trust.

The Black Box Problem:
•Models like neural networks, SVMs, and random forests lack 
explainability.

Explanation Techniques:
Internal Process-Based: Leverages model internals.
Perturbation-Based: Agnostic methods altering inputs to observe 
output changes.

Focus of This Chapter:
•Key methods: EXPLAIN, IME, LIME.
•Applications: Business, trust, and decision-making.



Taxonomy and Properties of 
Explanations

Two Primary Explanation Types:

Instance Explanations:
• Impact of input features on individual predictions.

Model Explanations:
• Aggregated insights revealing overall feature influence.

Evaluation Criteria for Explanation Methods:

Expressive Power: Logic or form of explanations.
Translucency: Degree of model inspection.
Portability: Applicability across models.
Algorithmic Complexity: Resource efficiency.

Quality Attributes of Explanations:
Accuracy, fidelity, consistency, stability.
Comprehensibility, certainty, importance.
Novelty and representativeness.

Molnar, C. (2020). Interpretable machine learning. Lulu. com.



Properties of an explanation

Molnar, C. (2020). Interpretable machine learning. Lulu. com.



Accuracy: Measures how well the explanation 
predicts unseen data. High accuracy is essential if the 
explanation is used in place of the model. When 
explaining the model's behavior, fidelity can suffice 
even with low accuracy.

Fidelity: Reflects how closely the explanation 
matches the model's predictions. High fidelity is 
crucial for reliable explanations, especially for local 
fidelity methods like Shapley Values or surrogate 
models.

Consistency: Compares explanations across models 
trained on the same task. High consistency is 
desirable when models rely on similar features but 
less so if models achieve similar predictions through 
different features (Rashomon Effect).

Properties of an individual explanation

High Fidelity:
A neural network predicts a loan approval. An 
explanation tool (e.g., LIME) says:

High income (+0.8) and credit score (+0.5) led to 
approval.

Small changes in income or credit score near the 
original inputs still give similar predictions.

Low Fidelity:
The same model predicts loan approval, but the 
explanation wrongly highlights debt (+0.7) as a strong 
positive factor.

Testing shows changes in debt don’t affect predictions 
as the explanation suggests



Stability: Evaluates how explanations vary for similar data points within the same model. High stability 
ensures that small input changes don’t cause drastic explanation shifts unless predictions change 
significantly.

Comprehensibility: Gauges how easily humans understand the explanation. This depends on 
explanation size, simplicity, and audience familiarity with the features.

Certainty: Indicates how well the explanation reflects model confidence in predictions, as well as its own 
uncertainty. Essential for understanding reliability.

Degree of Importance: Clarifies the relative importance of features or conditions in the explanation, such 
as which features contributed most to a decision.

Novelty: Highlights if an instance lies outside the training data distribution, signaling potential inaccuracy 
in both model and explanation.

Representativeness: Shows how many instances the explanation applies to, from individual predictions 
(e.g., Shapley Values) to entire models (e.g., linear weights).

Properties of an individual explanation



Levels of Evaluation

- Application level

- Human level

- Function level

Doshi-Velez, F., & Kim, B. (2018). Considerations for evaluation and generalization in interpretable machine learning. Explainable 
and interpretable models in computer vision and machine learning, 3-17.



Challenges of Interpreting Black-Box Models

Difficulty in Non-Symbolic Models
Transparent explanations are inherent in symbolic models like 
decision trees but absent in non-symbolic models (SVMs, ANNs, 
ensembles), requiring separate explanation methodologies.

Trade-off Between Transparency and Accuracy
Highly accurate models are often difficult to interpret, often requiring a 
compromise between interpretability and predictive power or 
supplementing with explanation methods.



Perturbation-Based Explanation 
Methods Overview

General Approach

Perturbation-based methods systematically modify the inputs of any predictive 
model, observing the effect on predictions to estimate feature importance. This 
process allows application across model types and supports both explanations and 
comparative model analysis.

Relationship to Other Analysis Methods

These methods are related to sensitivity and uncertainty analysis, as well as 
techniques like inverse classification and gradient-based attribution. Their 
generality makes them useful in a range of domains and for diverse data types, 
including text and streaming data.



The EXPLAIN Method

Principle and Computation
EXPLAIN determines the impact of each input feature by simulating 
the absence of that feature and measuring the effect on the model's 
prediction probability. Larger output changes signify greater feature 
importance, and the approach can distinguish between features that 
support or oppose a given prediction.

Limitations
The method only considers one feature at a time and cannot detect 
higher-order dependencies, such as interactions or feature 
redundancies, potentially overlooking complex relationships in data.



The IME Method

All-Subsets Approach

IME (Interaction-aware Model Explanation) overcomes the limitations of one-at-a-
time perturbations by assessing all possible subsets of feature values.

It attributes contributions based on Shapley values from cooperative game theory, 
fairly reflecting the interaction and importance of each feature.

Computational Considerations

Computation involves exponential complexity (2^a, where a is the number of 
features), but efficient sampling-based approximations are used.

IME provides theoretical guarantees of fair feature contribution assessment but is 
limited to problems with fewer features due to computational load.



Explain vs IME (See Shapley below)



Presenting Explanations and Visualization

Visualization Techniques

EXPLAIN and IME explanations are visualized via tools like quasi-
nomograms and bar charts displaying positive and negative 
contributions of each input variable, both at the instance and model 
level. This format enables users to intuitively assess how different 
features drive predictions.

Applications

Visualization supports both individual predictions and global model 
understanding, enhancing transparency and aiding expert evaluation. 
Thresholds and user controls help manage complexity in high-
dimensional settings.



The LIME Method

Local Interpretable Model-Agnostic Explanations

LIME (Local Interpretable Model-agnostic Explanations) generates explanations by 
sampling and perturbing the neighborhood of the instance to be explained.

It fits simple, interpretable models (like linear models or decision trees) to 
approximate the complex model locally.

LIME frames explanation as an optimization problem, trading off fidelity to the 
original model with complexity for interpretability.

Strengths and Weaknesses
LIME efficiently handles high-dimensional and large data sets, aiding real-time 
explanations.

However, it offers no guarantees of explanation faithfulness or stability, and can 
struggle in high-dimensional spaces or with complex feature interactions.



LIME – with breast cancer.

● Mean Radius: Average distance from the center to the perimeter of the 
nucleus.● Mean Texture: Standard deviation of gray-scale values in the nucleus 
image.● Mean Perimeter: Average perimeter of the nucleus.● Mean Area: Average area of the nucleus.● Mean Smoothness: Average of local variations in radius lengths 
(smoothness of the nucleus boundary).● Mean Compactness: Average of (perimeter² / area - 1.0), measuring how 
compact the nucleus is.● Mean Concavity: Average severity of concave portions of the nucleus 
contour.● Mean Concave Points: Average number of concave portions on the 
nucleus contour.● Mean Symmetry: Average symmetry of the nucleus (how mirrored it is 
across its center).● Mean Fractal Dimension: Average "coastline approximation" of the nucleus 
shape complexity.● Radius SE: Standard error of the nucleus radius.

Texture SE: Standard error of the gray-scale values in the nucleus.
Perimeter SE: Standard error of the nucleus perimeter.
Area SE: Standard error of the nucleus area.
Smoothness SE: Standard error of the local variations in radius lengths.
Compactness SE: Standard error of the compactness measure.
Concavity SE: Standard error of the concavity measure.
Concave Points SE: Standard error of the number of concave points.
Symmetry SE: Standard error of the symmetry measure.
Fractal Dimension SE: Standard error of the fractal dimension.
Worst Radius: Largest (worst) radius of the nucleus in the sample.
Worst Texture: Largest (worst) standard deviation of gray-scale values.
Worst Perimeter: Largest (worst) perimeter of the nucleus.
Worst Area: Largest (worst) area of the nucleus.
Worst Smoothness: Largest (worst) smoothness value.
Worst Compactness: Largest (worst) compactness value.
Worst Concavity: Largest (worst) concavity value.
Worst Concave Points: Largest (worst) number of concave points.
Worst Symmetry: Largest (worst) symmetry value.
Worst Fractal Dimension: Largest (worst) fractal dimension value.



Conclusion and Takeaways

Advantages of Perturbation-Based Explanations
EXPLAIN, IME, and LIME bring transparency to black-box models by revealing input variable contributions. They offer model-
agnostic explanations, support visual insights, and enhance trust in automated decisions. EXPLAIN and LIME are efficient for 
large problems, while IME provides fair, game-theoretically justified contributions.

Limitations and Future Directions
Each method has trade-offs: EXPLAIN misses feature interactions, IME can be computationally intensive, and LIME may lack 
faithfulness. Integration of these approaches and improved visualization are important future research directions. Practical 
adoption is facilitated by open-source tools.
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